323 research outputs found

    IV-VI resonant cavity enhanced photodetectors for the midinfrared

    Full text link
    A resonant-cavity enhanced detector operating in the mid-infrared at a wavelength around 3.6 micron is demonstrated. The device is based on a narrow-gap lead salt heterostructure grown by molecular beam epitaxy. Below 140 K, the photovoltage clearly shows a single narrow cavity resonance, with a relative line width of only 2 % at 80 K.Comment: 2 figure

    Forces on Dust Grains Exposed to Anisotropic Interstellar Radiation Fields

    Get PDF
    Grains exposed to anisotropic radiation fields are subjected to forces due to the asymmetric photon-stimulated ejection of particles. These forces act in addition to the ``radiation pressure'' due to absorption and scattering. Here we model the forces due to photoelectron emission and the photodesorption of adatoms. The ``photoelectric'' force depends on the ambient conditions relevant to grain charging. We find that it is comparable to the radiation pressure when the grain potential is relatively low and the radiation spectrum is relatively hard. The calculation of the ``photodesorption'' force is highly uncertain, since the surface physics and chemsitry of grain materials are poorly understood at present. For our simple yet plausible model, the photodesorption force dominates the radiation pressure for grains with size >~0.1 micron exposed to starlight from OB stars. We find that the anisotropy of the interstellar radiation field is ~10% in the visible and ultraviolet. We estimate size-dependent drift speeds for grains in the cold and warm neutral media and find that micron-sized grains could potentially be moved across a diffuse cloud during its lifetime.Comment: LaTeX(41 pages, 19 figures), submitted to Ap

    Efficient room-temperature light-emitters based on partly amorphised Ge quantum dots in crystalline Si

    Full text link
    Semiconductor light emitters compatible with standard Si integration technology (SIT) are of particular interest for overcoming limitations in the operating speed of microelectronic devices 1-3. Light sources based on group-IV elements would be SIT compatible but suffer from the poor optoelectronic properties of bulk Si and Ge. Here, we demonstrate that epitaxially grown Ge quantum dots (QDs) in a fully coherent Si matrix show extraordinary optical properties if partially amorphised by Ge-ion bombardment (GIB). The GIB-QDs exhibit a quasi-direct-band gap and show, in contrast to conventional SiGe nanostructures, almost no thermal quenching of the photoluminescence (PL) up to room-temperature (RT). Microdisk resonators with embedded GIB-QDs exhibit threshold-behaviour and super-linear increase of the integrated PL-intensity (IPL) with increasing excitation power Pexc which indicates light amplification by stimulated emission in a fully SIT-compatible group-IV nano-system

    Optical Properties of Vanadium in 4H Silicon Carbide for Quantum Technology

    Full text link
    We study the optical properties of tetravalent vanadium impurities in 4H silicon carbide (4H SiC). Emission from two crystalline sites is observed at wavelengths of 1.28 \mum and 1.33 \mum, with optical lifetimes of 163 ns and 43 ns. Group theory and ab initio density functional supercell calculations enable unequivocal site assignment and shed light on the spectral features of the defects. We conclude with a brief outlook on applications in quantum photonics

    Strong-field terahertz-optical mixing in excitons

    Get PDF
    Driving a double-quantum-well excitonic intersubband resonance with a terahertz (THz) electric field of frequency \omega_{THz} generated terahertz optical sidebands \omega=\omega_{THz}+\omega_{NIR} on a weak NIR probe. At high THz intensities, the intersubband dipole energy which coupled two excitons was comparable to the THz photon energy. In this strong-field regime the sideband intensity displayed a non-monotonic dependence on the THz field strength. The oscillating refractive index which gives rise to the sidebands may be understood by the formation of Floquet states, which oscillate with the same periodicity as the driving THz field.Comment: 4 pages, 6 figure

    Resolving the temporal evolution of line broadening in single quantum emitters

    Get PDF
    Light emission from solid-state quantum emitters is inherently prone to environmental decoherence, which results in a line broadening and in the deterioration of photon indistinguishability. Here we employ photon correlation Fourier spectroscopy (PCFS) to study the temporal evolution of such a broadening in two prominent systems: GaAs and In(Ga)As quantum dots. Differently from previous experiments, the emitters are driven with short laser pulses as required for the generation of high-purity single photons, the time scales we probe range from a few nanoseconds to milliseconds and, simultaneously, the spectral resolution we achieve can be as small as ∼ 2µeV. We find pronounced differences in the temporal evolution of different optical transition lines, which we attribute to differences in their homogeneous linewidth and sensitivity to charge noise. We analyze the effect of irradiation with additional white light, which reduces blinking at the cost of enhanced charge noise. Due to its robustness against experimental imperfections and its high temporal resolution and bandwidth, PCFS outperforms established spectroscopy techniques, such as Michelson interferometry. We discuss its practical implementation and the possibility to use it to estimate the indistinguishability of consecutively emitted single photons for applications in quantum communication and photonic-based quantum information processing

    Light emission from direct band gap germanium containing split-interstitial defects

    Get PDF
    The lack of useful and cost-efficient group-IV direct band gap light emitters still presents the main bottleneck for complementary metal-oxide semiconductor-compatible short-distance data transmission, single-photon emission, and sensing based on silicon photonics. Germanium, a group-IV element like Si, is already widely used in silicon fabs. While the energy band gap of Ge is intrinsically indirect, we predict that the insertion of Ge-Ge split-[110] interstitials into crystalline Ge can open up a direct band gap transmission path. Here, we calculate from first principles the band structure and optical emission properties of Ge, Sb, and Sn split-[110] interstitials in bulk and low-dimensional Ge at different doping concentrations. Two types of electronic states provide the light-emission enhancement below the direct band gap of Ge: a hybridized L-Γ state at the Brillouin zone center and a conduction band of Δ band character that couples to a raised valence band along the Γ-X direction. Majority carrier introduced to the system through doping can enhance light emission by saturation of nonradiative paths. Ge-Sn split interstitials in Ge shift the top of the valence band towards the Γ-X direction and increase the Γ character of the L-Γ state, which results in a shift to longer emission wavelengths. Key spectral regions for datacom and sensing applications can be covered by applying quantum confinement in defect-enhanced Ge quantum dots for an emission wavelength shift from the midinfrared to the telecom regime.FWN – Publicaties zonder aanstelling Universiteit Leide
    corecore